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Continuous Top-k Monitoring on
Document Streams

Leong Hou U, Junjie Zhang, Kyriakos Mouratidis, and Ye Li

Abstract—The efficient processing of document streams plays an important role in many information filtering systems. Emerging
applications, such as news update filtering and social network notifications, demand presenting end-users with the most relevant
content to their preferences. In this work, user preferences are indicated by a set of keywords. A central server monitors the document
stream and continuously reports to each user the top-k documents that are most relevant to her keywords. Our objective is to support
large numbers of users and high stream rates, while refreshing the top-k results almost instantaneously. Our solution abandons the
traditional frequency-ordered indexing approach. Instead, it follows an identifier-ordering paradigm that suits better the nature of the
problem. When complemented with a novel, locally adaptive technique, our method offers (i) proven optimality w.r.t. the number of
considered queries per stream event, and (ii) an order of magnitude shorter response time (i.e., time to refresh the query results) than
the current state-of-the-art.

Index Terms—Top-k query; Continuous query; Document stream.
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1 INTRODUCTION

In the era of big data, the amount of information made
available to users far exceeds their capacity to discover
and understand it. For instance, a user on Twitter may
receive an overwhelming volume of notifications if her
message is retweeted by too many people in a short
period. Moreover, the timeliness of information filtering
and delivery is of great importance. For example, a
user would like to receive instant updates of the hottest
topics on social news and entertainment websites (e.g.,
on reddit.com). Thus, the efficient filtering and monitoring
of rapid streams is key to many emerging applications.

We consider continuous top-k queries on documents
(CTQDs), a topic which has received a lot of attention
recently [1], [2], [3]. In this context, a central server
monitors a document stream and hosts CTQDs from
various users. Each CTQD specifies a set of keywords,
as explicitly given by the issuing user or extracted from
her online behaviour [4], [5]. The task of the server is
to continuously refresh for every CTQD the top-k most
relevant documents to the keywords, as new documents
stream in and old ones become too stale to be of interest.

Stock news notifications are an application domain for
CTQDs. The investment decisions of a stock broker are
very sensitive to news about the stocks in her portfolio.
To enable timely decisions, presenting her with the most
relevant news as soon as they become available is key
to the success of the notification system. Similar appli-
cations can be found in monitoring live Web content,
such as RSS/news feeds, blog entries, posts on social

• L. H. U, J. J. Zhang and Y. Li are with the Department of Computer and
Information Science, University of Macau. E-mails: ryanlhu@umac.mo,
zhjjie89@gmail.com, yb47438@umac.mo

• K. Mouratidis is with the School of Information Systems, Singapore
Management University. E-mail: kyriakos@smu.edu.sg

media, etc. Widely available notification systems, such
as Google Alerts (google.com/alerts) and Yahoo! Alerts
(alerts.yahoo.com), attest to the significance of these
applications. On the other hand, these systems either
work in a semi-offline manner by delivering periodic
updates (e.g., daily) or allow for coarse filtering only
(e.g., based on general topics, rather than sets of specific
keywords). Another application domain for CTQDs are
microblog real-time search services [6], [7]. Currently,
these services allow the user to query (in an on-demand,
one-off way) for posts that match a set of keywords.
CTQDs could extend the functionality of these services
by offering continuous monitoring/notifications about
new posts that match the keywords.

In traditional text search, there are snapshot (i.e., one-
off) top-k queries over static document collections. The
inverted file is the standard index to organize docu-
ments [8]. It comprises a list for every term in the
dictionary; the list for a term holds an entry for each
document that contains the term. By sorting the lists
in decreasing term frequency, and with appropriate use
of thresholding (e.g., [9]), a snapshot query can be an-
swered by processing only the top parts of the relevant
lists. Due to the said sorting, we refer to that paradigm
as frequency-ordering. This common practice for snapshot
queries has been followed by most approaches for con-
tinuous top-k search, albeit adapted to the “standing”
nature of the continuous queries and the highly dynamic
characteristics of the document stream, e.g., [1], [2].

In this work, we depart from frequency-ordering, and
adopt a different paradigm, namely, identifier-ordering
(ID-ordering). Past studies on snapshot top-k queries
revealed that, for sparse types of data, it may be more
effective to sort the lists of the inverted file by document
ID [10], thus enabling “jumps” within the relevant lists,
i.e., disregarding contiguous fractions of the lists. This
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is an interesting fact, which however is not directly
applicable to continuous top-k queries. An application
of ID-ordering to document streams would incur costly
index maintenance, and also it would require repetitive
query reevaluation, as it entails no mechanism to reuse
past query results in response to updates.

We propose an ID-ordering methodology for CTQDs.
Our methodology involves three dimensions. First, we
reverse the role of the documents and the queries. That
is, we index the (relatively static) queries and probe
the streaming documents against that index, in order to
eliminate the need for index maintenance due to stream
events. The general idea of indexing the queries instead
of the data in a streaming context is commonly referred
to as query indexing, and has been used for many types
of continuous queries (e.g., [11]). Second, since we index
user queries which, unlike the documents, typically com-
prise just a few terms (i.e., they are hugely sparse), we
may effectively apply ID-ordering to the query index. The
adaptation of ID-ordering to a query index, however, is
far from trivial and requires a careful redesign of its inner
workings, as we explain in Section 4.2. By incorporating
the first two dimensions, we already have a preliminary
CTQD method (albeit just a stepping stone to our com-
plete, most comprehensive solution), termed Reverse ID-
Ordering (RIO). RIO is already faster than existing CTQD
approaches, but we do not stop there. Third, we com-
plement RIO with a novel, locally adaptive technique
that produces tighter processing bounds. This technique
renders the overall CTQD method optimal w.r.t. the
number of considered queries per stream event, i.e., we
prove that it computes the score of an arriving document
w.r.t. the smallest possible number of queries, for any
algorithm that follows the ID-ordering paradigm and
guarantees correctness. The resulting method is our most
advanced technique, called Minimal RIO (MRIO).

Through an extensive experimental evaluation with
streams of real documents, we demonstrate that MRIO
outperforms the current state-of-the-art CTQD solution
by an order of magnitude. Furthermore, the “internal”
comparison between MRIO and RIO reveals that the vast
performance improvements achieved are primarily due
to the third dimension sketched above, i.e., due to our
locally adaptive technique. The contributions we make
in this paper are summarised as follows:
• Our advanced approach (MRIO) outperforms the

current state-of-the-art by one order of magnitude.
• MRIO employs novel bounds that offer proven op-

timality w.r.t. the number of considered queries per
stream event.

• MRIO is more than two times faster than RIO,
demonstrating that a skillful adaptation of ID-
ordering to CTQDs alone (as in RIO) is not enough
to derive the improvements achieved in this work.

• We further improve the performance of MRIO
by restructuring its query index (i.e., rearranging
the queries inside) to better exploit locality and
strengthen the pruning effectiveness of its bounds.

• Our evaluation has a broader experimental value
too, because it involves (besides the state-of-the-
art for CTQDs) methods for different formulations,
which perform competitively, and were never put
in the same testbed before.

2 RELATED WORK

In information filtering the objective is to remove from
an information stream those items that are of no inter-
est to the end users. Information filtering approaches
have been studied for text streams [12], however, their
focus is to determine an appropriate relevance threshold,
based on the user’s profile and the stream’s character-
istics [13]. The actual filtering involves fixed thresholds
(and therefore binary relevance assessments per stream
item), rather than relative similarity and ranking.

Publish−subscribe is a messaging pattern where the
publishers of messages categorize their messages into
classes, and the subscribers receive only those messages
that fall in their classes of interest [14], [15]. Unlike
CTQD, there is typically a set of predefined classes
(instead of terms) and there is no notion of relative rank-
ing. [16] does consider relative similarity, however, its
goal is to identify the k most relevant queries for every
newly published message. [17] proposes a probabilistic
algorithm that keeps a select subset of the messages in a
sliding window to support approximate top-k process-
ing. Still in the publish−subscribe setting, [18] considers
the social annotation of news articles. Specifically, given
a set of news stories (documents), it maintains for each
of them the k most related tweets posted. Although in
[18] the documents (news stories) play the role of the
standing queries, it could be applied to our setting (by
treating user queries as news stories), although it is not
tailored to it. We include this method in our experiments,
abbreviated as TPS (for top-k publish−subscribe).

The top-k query is relevant to our work. Given a set
of options and a scoring function defined over their
attributes, the goal is to report the k options with the
highest scores. Top-k processing methods have been
extensively studied in relational databases; [19] offers an
extensive survey. Among them, the threshold algorithm [9]
is central to our competitors. It assumes that the options
are indexed by a number of lists, each of which is respon-
sible for one option attribute, and keeps options sorted
in descending order of that attribute. The main idea is to
consider options from the sorted lists in a round-robin
fashion and maintain an upper bound (threshold) for the
score of any unseen option. The algorithm terminates
when the k-th best option found so far scores no lower
than the threshold.

In the context of text search engines, similarity search
is typically framed as a top-k problem over a set of docu-
ments. Terms (in queries and documents) are treated as
attributes, weighted based on a standard scheme (e.g.,
tf-idf or Okapi BM25). The score of a document for
a query is defined as a function over their common
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terms, such as cosine similarity. To facilitate search, the
documents are indexed by an inverted file; [8] surveys
different types of inverted files and query processing
techniques. The inverted file includes a sorted list per
term. In the frequency-ordering paradigm, the sorting key
is term frequency (weight), whereas in ID-ordering it is
the document ID. In the former case, processing follows
similar principles to the threshold algorithm in order to
consider only the top parts of the sorted lists. In the latter
case, the lists are read in their entirety but jumps over
ID ranges are made possible; in Section 4.1, we describe
in more detail the most efficient processing approach in
this paradigm [10], [20].

Continuous versions of the top-k query have also been
studied. Top-k monitoring was originally addressed over
a stream of low-dimensional records [21], [22]. The pro-
posed methods relied on spatial indices and geometric
reasoning (e.g., dual space transformations), and were
thus tailored to data in just a handful of dimensions.
Bound by the dimensionality curse, these approaches
are not applicable to document streams, because if terms
were dealt with as attributes, dimensionality would be
in the order of hundreds of thousands.

Rao et al. [23] consider streams of documents, but
address a special version of continuous top-k queries
where the query weights are equal (equivalently, the
query terms are unweighted). In this version of the
problem, if the search terms in a query q are a superset of
those in another q′, then the score of a document w.r.t.
q is always larger than its score w.r.t. q′. This means
that if we compute the score of a stream document
d w.r.t. q, and that score is already smaller than the
score of the k-th document in the result of q′, we can
directly infer that q′ is not affected by d. The proposed
solution utilizes this “coverage” relationship between
queries to safely ignore some of them when a document
streams in. It is inapplicable to our problem, where query
weights are generally not equal. Even if an extension
were possible, the chances of an ad-hoc user query being
completely covered by another would be too slim.

Closest related to our work are methods for con-
tinuous top-k queries (with ad-hoc term weights) on
document streams. [2] assumes the sliding window
model and indexes the valid documents by a (frequency-
ordered) inverted file. It uses the threshold algorithm to
compute the initial top-k results, and maintains pointers
in the sorted lists so as to resume processing from these
positions when result refill is necessary. [1] proposes an
approach that also relies on frequency-ordering and the
threshold algorithm, but indexes the queries instead of
the stream documents. It is shown to outperform [2] and
is the current state-of-the-art. We refer to it as reverse
threshold algorithm (RTA). The same authors extended
RTA to heterogeneous scoring functions, by considering
hotness in addition to similarity score [24].

Vouzoukidou et al. [3] propose a CTQD method, called
SortQuer. For every term in the dictionary, they repre-
sent each query q that includes the term as a point in

a two-dimensional space – one axis corresponds to the
score of the current top result document and the other
axis to the query weight for that term. When a document
(which includes the term) arrives, it is mapped to a
region. Only queries that fall in that region could be
affected by the document. Vouzoukidou et al. [3] eval-
uate the k = 1 case; in that case, SortQuer outperforms
RTA. Although SortQuer was designed with the k = 1
case in mind, it applies easily to k > 1 as well, thus we
include it in our experiments, and offer a comprehensive
evaluation against our methods and previous art.

Some stream processing frameworks for multidimen-
sional objects are also related to our work. Koudas
et al. [25] propose an approximate k-nearest neighbor
monitoring technique for streams of low-dimensional
points. However, their solution is inapplicable to CTQDs,
because even if stream documents were mapped to
points in term space, their dimensionality would be in
the order of many thousands. Zhang et al. [26] study a
shared processing framework for multiple aggregation
queries on a stream. It is an interesting idea to share
computations among queries. However, this work is in-
applicable to CTQDs because it cannot handle weighted
sum aggregates for arbitrary weights. That is, even if
two CTQDs share some common terms, their respective
weights for these terms are generally different.

3 PRELIMINARIES

In this section, we first define the similarity metric
between queries and documents, and present the model
of focusing on the fresher stream content. Next, we for-
malize the continuous top-k query on documents (CTQD).

3.1 Similarity Measure
We treat the query (i.e., the set of keywords it specifies)
and the documents as vectors. Letting T be the dictionary
of all terms, a query or a document vector includes one
weight per term in the dictionary. That is, a query q and
a document d are represented as:

q = 〈w1, w2, ..., w|T|〉; d = 〈f1, f2, ..., f|T|〉

The term weights wi and fi can be assigned to queries
and documents, respectively, using any standard weight-
ing scheme, such as tf-idf or Okapi BM25. Without loss
of generality, we assume that all query and document
vectors are normalized to unit magnitude. Note that
typically user queries include just a few terms, which
means that the query vectors are extremely sparse (i.e.,
include numerous zero values). The documents, too,
include just a fraction of the terms in the dictionary, thus,
there are many zeros in their vectors.

As per common practice [27], the textual similarity
between a query q and a document d is defined as the
cosine similarity of their vectors:

c(q, d) =
q · d
|q| |d|

=
∑

1≤i≤|T|

wifi (1)
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The cosine similarity measure c(q, d) takes values in
[0, 1]; the higher its value, the greater the textual sim-
ilarity.

3.2 Document Freshness
In stream monitoring applications, the freshness of in-
formation is essential. Hence, a focusing on the most
recent stream documents is required. The two prevalent
formulations to achieve this focusing are the sliding
window and the decay model. A sliding window only
considers as valid the documents that arrived most
recently; the sliding window includes either a fixed
number of documents (count-based version) or those
that arrived within a fixed number of time units before
current time (time-based). On the other hand, in the
decay model the score of the documents drops over time
by applying a decay function, so that the more recent
documents are favored in query answering. Our work
applies to both models, but the latter (and in particular
its forward-decay version) is better suited to our targeted
applications, as suggested in [28], [3]. The forward-decay
model works as follows.

Consider a document d with arrival time τd and cosine
similarity c(q, d) to query q. The score of d w.r.t. q is
defined as

S(q, d) = c(q, d)/e−λ∆τd (2)

where λ is an application-specified decay parameter, and
∆τd is the difference between the document’s arrival
time τd and a reference time τ0 in the past (e.g., the
system startup time). Unlike the vanilla decay model,
this forward-decay formulation associates an invariable
score to each arriving document (that is, S(q, d) does not
change over time) while at the same time it effectively
captures the freshness requirement of streaming applica-
tions [28]. Note that in this model, arriving documents
receive increasingly larger scores as time goes by1.

3.3 Problem Definition
A stream of documents flows into a central processing
server, which hosts a set of CTQDs. Each CTQD specifies
a set of keywords (modeled as a query vector q) and a
positive integer k. For the sake of notation, we denote
by m the number of keywords it specifies. The result
of a CTQD includes the k stream documents with the
highest scores S(q, d) seen so far. The task of the stream
server is to update all query results as new documents
arrive. Document arrivals are referred to as stream events.
The primary performance metric in our work is the time
required to refresh (update) all CTQD results in response
to stream events.

Although in our default setting document arrivals are
the only type of stream events, in Section 6 we con-
sider the handling of other events types, such as query

1. If at some point the scores grow beyond available numerical
precision, the reference time τ0 is reset to the current time and the
scores of documents that belong to the top-k results are recomputed
accordingly.

insertions, query deletions, and document expirations.
The handling of document expirations enables, among
others, the application of our framework to the sliding
window model too.

4 ID-ORDERING TECHNIQUES

4.1 Index & Query Processing for Snapshot Queries
In this section, we overview the ID-ordering paradigm
for snapshot queries. The documents are indexed by
an inverted file, comprising a list Li for every term ti
in the dictionary. Li holds an entry 〈dID, fi〉 for every
document that includes term ti (where dID is the ID of
the document, and fi its weight for term ti). All lists are
sorted in ascending document ID. The execution strategy
to process a (snapshot) query q on this index evaluates
the documents one after another from the sorted lists, but
it performs “jumps” over zones of document IDs. The
most efficient processing approach is Weighted AND [10],
[20]; in the following we refer to this approach.

The maximum fi value in each list is pre-computed
and stored with it – we denote it as µi. Posed a query,
the algorithm executes in a number of iterations involv-
ing only the relevant lists. For every list Li, a cursor
ci is used to store the ID of the next unconsidered
document in the list. Assume that the query involves
terms t1, t2, ..., tm. At the beginning of an iteration, the
processing order among the lists is decided based on their
ci, i.e., by placing first the list whose cursor points at the
smallest document ID, then the list whose cursor points
at the next smallest document ID, etc. Assume that the
processing order is L1 → L2 → ... → Lm (equivalently,
in the beginning of the iteration c1 ≤ c2 ≤ ... ≤ cm).
The invariant of the method is that, for every i ∈ [1,m),
any list after the i-th in the processing order includes
no entry for document IDs in [c1, ci). That is, the score
of every document ID in the zone [c1, ci+1) is upper
bounded by:

UB(i) =
∑

1≤j≤i

wjµj (3)

Recall that µj is the maximum term frequency in the j-th
list.

Let Sk denote the score of the k-th best document
found so far. The algorithm identifies the smallest i ∈
[1,m] for which UB(i) ≥ Sk and sets the corresponding
cursor ci as the pivot. Effectively, all documents in the
zone [c1, ci) can be safely pruned2. Thus, all cursors
advance (“jump”) to the first ID in their list that is
no smaller than ci. Now, ci is evaluated (i.e., its score
is computed and the query result updated accordingly)
only if c1 = c2 = ... = ci; otherwise, we proceed to the
next iteration3. The process terminates when all cursors
reach the end of their lists.

2. Because UB(i − 1) < Sk . See also previous discussion on
Equation 3.

3. If document ci indeed belongs to the result, it will be evaluated in
a future iteration. That deferred evaluation leads to fewer unnecessary
evaluations [10].
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Fig. 1. Query processing in the ID-ordering paradigm

To demonstrate, we use the example in Figure 1, where
q = 〈0.3, 0.5, 0.2〉 and k = 1. In the first iteration, all
cursors point at d1, which is evaluated and becomes
the interim result with score Sk = 0.28. The cursors
advance to the next position, i.e., c1 = 3, c2 = 12, c3 = 6.
When the second iteration commences, the processing
order is L1 → L3 → L2 because c1 < c3 < c2. First,
the upper bound at L1 is computed as w1µ1 = 0.09,
which is smaller than Sk. Then, the upper bound at L3 is
computed as w1µ1 + w3µ3 = 0.21, which is also smaller
than Sk. The upper bound at the last list (L2), however,
is w1µ1 + w3µ3 + w2µ2 = 0.46, which is greater than Sk.
Thus, the document pointed by the cursor of L2 (i.e., d12)
becomes the pivot. The cursors of L1 and L3 move to d12

and d13, respectively, and the documents in the shaded
parts of the lists are safely pruned. c3 6= 12, hence d12

is not evaluated (not in this iteration, at least). Then, a
new iteration commences, and so on. When all lists are
exhausted, the interim result becomes final.

4.2 Reverse ID-Ordering for CTQD processing

A straightforward approach is to index documents as
per normal, and evaluate all CTQDs as explained in
Section 4.1. Whenever a new document arrives, we need
to (i) update the index and (ii) reevaluate each and
every query. This approach is impractical because it
requires excessive processing for index maintenance and,
primarily, for query reevaluation from scratch. A key
observation to remedy the problem is that an arriving
document may affect the result of just a fraction of the
queries. To effectively identify the affected queries and
to avoid heavy index maintenance costs, instead of the
documents, we index the queries, following the general
query indexing principle.

The application of query indexing to the ID-ordering
paradigm, however, is far from trivial. For snapshot
queries (Section 4.1), the index holds documents that
compete among each other in order to enter a single result,
thus comparing against a single “result admission” score
Sk. In our case, however, the index holds queries that do
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Fig. 2. Example of an invalid move

not compete nor otherwise affect each other, and which
have their own independent Sk scores. We use a simple
example to demonstrate that a direct application of ID-
ordering is problematic.

Assume for simplicity that λ = 0, i.e., that there is
no decay and therefore S(q, d) = c(q, d) =

∑
1≤i≤|T| wifi

(this is an assumption we will drop later in this section).
Consider Figure 2, where the sorted lists of the index
hold a set of queries. Assume that a new document
d = 〈0.3, 0.5.0.2〉 streams in, and must be probed against
the index to update the affected query results. Suppose
the cursors of the three relevant lists point at q3, q5,
and q50, hence, the processing order in this iteration is
L1 → L2 → L3. Assume that the current Sk score for
q3, q4, and q5 is 0.5, 0.2, and 0.3, respectively. A direct
application of ID-ordering would identify the smallest
i ∈ [1, 3] for which UB(i) > Sk(qi) ⇔

∑
1≤j≤i fjµ

q
j >

Sk(qi) (where Sk(qi) is the Sk score for qi, and µqj is the
maximum wj value in list Lj) and set the corresponding
cursor ci as the pivot. This would set c2 as pivot (point-
ing at q5), and move c1 from q3 to q10, thus jumping
over (i.e., disregarding) query q4. This move, however,
is invalid since in reality the result of q4 is affected by d,
that is, S(q4, d) = 0.24 is greater than the current Sk(q4)
of 0.2.

The main reason that a direct application of ID-
ordering fails is that every query imposes its own con-
dition to determine whether a document arrival affects
its result, i.e., it requires comparison of the list upper
bounds against its own Sk value. In the Reverse ID-
ordering (RIO) method we remedy the situation by adap-
tively scaling the wi values in every query, such that they
all compare the list upper bounds with the exact same
Sk score. In particular, for every query, we divide its
wi values by the query’s own Sk value, such that the
score of its k-th result (i.e., Sk) is always 1. Accordingly,
the list upper bounds UB(i) are now compared to 1.
That is, in each iteration RIO sets the pivot to the
cursor of the first list (in the processing order) where
UB(i) > 1⇔

∑
1≤j≤i fjµ

q
j > 1.

RIO proceeds like the algorithm in Section 4.1, the
difference being that when the pivot in an iteration is
evaluated, we need to compute the score of the arriving
document d for the corresponding query q (i.e., the
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query at the pivot position), and update the result of
q if d scores higher than its current Sk score (i.e., higher
than 1). If so, the Sk of q also needs to be updated and,
along with it, the wj values of q must be rescaled such
that the new Sk is normalized to 1. The latter requires
that the entries of q in the lists where it appears must
be updated accordingly, and these updates might also
affect the µqj values kept for those lists4. We show the
correctness of RIO in Lemma 1.

Lemma 1. RIO reports the correct result for every query
when a new document arrives.

Proof: We prove the lemma by contradiction. Sup-
pose q is a query affected by the new document d, but
disregarded by RIO (i.e., “jumped over”). Without loss
of generality, assume that in the iteration that jumped
over q, the processing order of the lists was L1 → L2 →
...→ Lm (where m represents the number of terms in d)
and the pivot was ci.

For q to be jumped over, its ID must be in [c1, ci) and,
thus, it cannot appear in any list past the i-th in the
processing order, i.e., d and q could have in common
only terms t1, t2, ..., ti−1. For the pivot to be ci, it must
hold that UB(i−1) ≤ 1 (because UB(i) is the first upper
bound in the processing order that exceeds 1). Thus,∑

1≤j≤i−1 fjµ
q
j ≤ 1. On the other hand, for any wj value

in q it holds that wj ≤ µqj . From the last two inequalities,
we derive that

∑
1≤j≤i−1 fjwj ≤ 1. The left part of the

inequality is the score of d for query q. Since the score
is no greater than 1, d does not belong to (equivalently,
does not affect) the result of q, which contradicts the
hypothesis.

Taking decay into account: For simplicity, so far we
have assumed that λ = 0. In the general case where
λ ≥ 0, the only necessary modification regards the upper
bound computation as

UB(i) =
∑

1≤j≤i

fjµ
q
j/e
−λ∆τd (4)

To see why this is necessary, we refer to the proof
of Lemma 1. The proof for λ ≥ 1 follows the
same lines, however, the derivation from UB(i −
1) ≤ 1 (in the second paragraph of the proof)

now translates to
∑

1≤j≤i−1 fjµ
q
j/e
−λ∆τd ≤ 1

wj≤µq
j⇒∑

1≤j≤i−1 fjwj/e
−λ∆τd ≤ 1 ⇒ S(q, d) ≤ 1 (and therefore

d does not affect q).

Optimization (early termination): During the execution
of RIO, some lists may be exhausted. If the upper bound
on the remaining lists is already not greater than 1, the
score of any unseen document cannot be greater than 1
too, thus RIO can safely terminate.

4. A lazy update strategy is possible in the index. The wj val-
ues do not appear in the UB(i) expression (recall that UB(i) =∑

1≤j≤i fjµ
q
j ), thus the only information that needs to be explicitly

updated to preserve RIO correctness are the µqj values. If the previous
wj values of q were not defining any µqj value, then the updated wj

of q need not be reflected explicitly in the index.

Algorithm 1 presents the pseudo-code for RIO.
Lines 3-4 implement the early termination optimization.
For easy presentation, we assume that the order decided
in line 5 is L1 → L2 → ... → Lm (equivalently,
that c1 ≤ c2 ≤ ... ≤ cm). An implementation note
on line 7 is that UB(i) computation can be performed
incrementally (i.e., based on UB(i−1)). The savings from
incremental upper bound computation are significant, if
one considers that m can be very large.

Algorithm 1 RIO(INCOMING DOCUMENT D)
1: set all cursors ci to the beginning of their lists
2: while the relevant lists are not exhausted do
3: if sum of fjµ

q
j for all non-exhausted lists ≤ 1 then

4: return
5: decide execution order of relevant lists
6: for i← 1 to m do
7: if UB(i) > 1 then
8: advance c1, c2, ..., ci−1 until their IDs ≥ ci
9: if c1, c2, ..., ci point at same query q then

10: if S(q, d) > 1 then
11: insert d into the top-k result of q
12: reflect new Sk(q) to wj values of q
13: advance c1, c2, ..., ci to next position
14: break (goto line 2)

5 MINIMAL REVERSE ID-ORDERING

In this section, we present Minimal RIO (MRIO), our
most advanced algorithm. MRIO builds on RIO, but
enhances (tightens) its bounds via a novel, locally adap-
tive approach. This approach renders MRIO optimal
(minimal) in terms of the number of iterations required
to process a document arrival. In Section 5.1, we analyze
(analytically and quantitatively) RIO to gain insight into
the main factors that determine its performance, and to
motivate MRIO. In Section 5.2, we describe MRIO and
prove its optimality. Finally, in Section 5.3, we describe
an optimization regarding the structure of the inverted
file that significantly improves performance.

5.1 Analysis of RIO
Let I be the number of iterations executed by RIO and
|L| be the average length of a sorted list in the query
index. Table 1 presents the key cost factors in RIO,
referring to the specific lines in Algorithm 1. Recall that
m denotes the number of terms in the arriving document
d. We break down the costs into two types, ρi and
ρc, i.e., those dependent on the number of iterations
I and those independent of it. The second category
includes only the advancement of cursors, accounting
for a total of O(m · |L|) since the m relevant lists are
scanned in their entirety. The overall complexity of RIO
is O(I ·m logm+m · |L|).

To quantify ρi and ρc, we measure them empirically
in our default experiment setting (details to be given in
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TABLE 1
Complexity of Key Steps in Algorithm 1

Line # Action Time Cost Type
5 sorting O(I ·m logm)

ρi
7 UB computation O(I ·m)
9 position check O(I ·m)
10 score computation O(I ·m)
8 and 13 moving cursors O(m · |L|) ρc
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Fig. 3. Time breakdown and no. of iterations in RIO

Section 7). Specifically, in Figure 3 we vary the number
of CTQDs in the system and present the breakdown
of the response time in RIO into the different costs of
Table 1. The left vertical axis represents percentage. The
number on top of each bar is the total response time
(in ms). In the same chart we also plot the number of
iterations I, illustrated by diamonds; the right vertical
axis corresponds to I and is in logarithmic scale. We
observe that ρi vastly dominates the overall cost5. We
also observe that the number of iterations grows quickly.
A reason is that as the number of queries increases,
so does the length of the lists. Another reason is that
the more the queries the larger the µqj values, i.e., the less
effective the pruning by upper bounds. This motivates our
most advanced approach, MRIO, which uses (provably)
the tightest possible bounds, regardless of the number
of queries or any other system parameter.

5.2 Minimizing Iterations in MRIO
Having established that the response time of RIO is
dominated by the ρi type costs, and given that all costs
of that type are proportional to I (see Table 1), the ideal
way to improve performance is to reduce the number
of iterations required. To achieve that, we will need to
perform as large jumps in the relevant lists as possible.
In turn, what determines the length of the jumps (equiv-
alently, the amount of pruned queries) is the tightness of
the upper bounds UB(i). Tightening the upper bounds
is what we are set to achieve in this section.

The upper bound UB(i) in RIO (Equation 4) is very
loose because it is derived from the maximum wj value
in each involved list in its entirety, i.e., µqj . The key idea

5. For completeness, we mention that sorting is the main bottleneck
of the total response time. This is because a document typically
contains several hundreds or thousands of terms.

in MRIO is to replace µqj with the maximum wj value
among exactly those queries considered for pruning, i.e.,
those that will be jumped over if ci is set as the pivot.

To formalize, we introduce the concept of the process-
ing zone. Assume that the processing order is L1 → L2 →
... → Lm. Recall from the discussion on Equation 3 for
standard ID-ordering that the i-th upper bound regards
IDs in [c1, ci+1) (except for i = m where the ID range
is [c1, cm]) – it is exactly these IDs that are candidates
for pruning when the i-th upper bound is considered.
We call that ID range the i-th processing zone. We also
introduce function ψj(i) which returns the maximum wj
value in list Lj for query IDs in the i-th processing zone:

ψj(i) =

{
max. wj for query IDs in [c1, ci+1) if i ∈ [1,m)

max. wj for query IDs in [c1, cm] if i = m
(5)

The upper bounds UB∗(i) in MRIO are defined as:

UB∗(i) =
∑

1≤j≤i

fjψj(i)/e
−λ∆τd (6)

Essentially, Equation 6 is derived from Equation 4 by
replacing the µqj values with their local counterparts ψj(·)
for the respective processing zone, i.e., with the exact
maximum wj values for those and only those queries that
will be pruned if UB∗(i) ≤ 1. The resulting pruning is
therefore safe, and at the same time the upper bounds
UB∗(i) are the tightest possible. We refer to UB∗(i)
as the local upper bound for list Li. The pseudo-code
for MRIO is the same as Algorithm 1 by replacing the
condition in line 7 with UB∗(i) > 1.

Lemma 2. MRIO invokes the minimum possible number of
iterations subject to the ID-ordering execution paradigm.

Proof: The invariant of the ID-ordering
paradigm [10] (described above Equation 3) ensures
that the iterations partition the sequence of all query
IDs into disjoint ranges; the range for an iteration
extends from the smallest cursor in the beginning of the
iteration to the pivot it eventually sets. The paradigm
itself imposes two limitations: (i) the pivot must be
selected among the original cursor positions in the
beginning of the iteration, and (ii) only the pivot can
be evaluated, i.e., have its score accumulated, within
the iteration6. To demonstrate minimality, it suffices to
show that in MRIO these ranges are the longest possible
to uphold correctness and abide by the said limitations,
equivalently, that each iteration sets the pivot to the
largest possible among the initial cursor positions.
Because ψj(i) is the exact maximum wj value in the
i-th processing zone, and since we cannot accumulate
the score of any non-pivot query across sorted lists,

6. This is the quintessence of ID-ordering. If the limitation is
dropped, every query between c1 and the currently examined ci could
be evaluated, thus leading to greater jumps. That, however, defies
the purpose of ID-ordering which is to avoid as many evaluations
as possible.
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UB∗(i) is already the tightest upper bound estimation
possible that guarantees correctness of the jump. Due to
the monotonicity of UB∗(i) to i, MRIO always chooses
the largest permissible pivot position.

Note that MRIO is minimal w.r.t. the structure of
the inverted index, meaning that the algorithm has no
control over the query index, and therefore a better
structured index could lead to fewer iterations. Mini-
mality w.r.t. a given index is common among optimality
proofs for index-based algorithms. For instance, the I/O
optimality of the well-known best-first nearest neighbor
algorithm holds for a fixed R-tree index [29].

In Figure 4, we present an example of MRIO process-
ing and demonstrate its difference from RIO, assuming
for simplicity that λ = 0. The µqj values and the vector
of the arriving document d are shown at the bottom of
the figure. In the beginning of the current iteration, the
cursors in the four relevant lists are 3, 9, 20, and 25, thus
the processing order is L1 → L2 → L3 → L4. In RIO,
the first cursor c1 = 3 would be set as pivot because
UB(1) = f1µ

q
1 = 1.6 > 1. In MRIO, however, the 1-st

processing zone is [c1, c2) = [3, 9), covering the darker-
gray entries in L1, thus, ψ1(1) = 2 (the maximum w1

among these entries) and UB∗(1) = f1ψ1(1) = 0.4 < 1.
Hence, MRIO continues the current iteration and moves
to L2. The processing zone becomes [c1, c3) = [3, 20),
thus, ψ1(2) = 3 and ψ2(2) = 2, taking into account
additionally the intermediate-gray entries. UB∗(2) =
f1ψ1(2) + f2ψ2(2) = 0.9 < 1, hence, MRIO proceeds to
L3. The 3-rd processing zone is [c1, c4) = [3, 25) which
updates the ψj(·) values to account also for the lighter-
gray entries. Although this does not increase ψj(·) for
the first and second list, it sets ψ3(3) = 2. Therefore,
UB∗(3) = f1ψ1(3) + f2ψ2(3) + f3ψ3(3) = 1.3 > 1. The
iteration terminates here by setting c3 = 20 as the pivot.
This is a significant improvement (i.e., a greater jump)
compared to RIO whose pivot in the same example is
c1 = 3. Larger jumps translate to fewer iterations and, in
turn, to shorter response time.

Implementation of ψj(·): We consider three alternative

implementations for function ψj(·).
I) Sequential scan: Given a processing zone, we sequen-

tially scan Lj from the position of cj to the last query
ID that falls in the zone, using a temporary cursor (we
advance the actual cj only after the pivot is set). Note
that within the same iteration, when moving from the i-
th processing zone to the next, ψj(i+1) can be computed
incrementally from ψj(i).

II) Segment tree: We index each list Lj by a balanced,
binary segment tree [30] on query ID, where every non-
leaf node keeps the maximum wj value in the queries
under its subtree. Given a processing zone, the maxi-
mum weight ψj(i) can be determined in logarithmic time
by traversing the tree. When the Sk score of a query is
updated, its new wj values are reflected in the respective
sorted lists, each taking logarithmic time.

III) Square root block decomposition: We partition each
list Lj into

√
|Lj | blocks of

√
|Lj | contiguous query IDs

(where |Lj | is the length of the list). We then compute
and store the maximum wj value for each block. Finding
the maximum weight ψj(i) in a processing zone takes
O(

√
|Lj |) time – that is the cost to scan the contents

of the first and last block that overlap the zone, and
to scan the precomputed maxima for the intermediate
blocks. Update of a wj value requires O(

√
|Lj |) time to

recompute the corresponding block’s maximum.
The segment tree and the block decomposition options

offer better asymptotic performance and enable an accu-
rate analysis of the response time, i.e., by plugging a
O(log|L|) or O(

√
|L|) cost per UB∗(i) computation in

the analysis of Table 1. However, in our experiments
(Section 7) the sequential scan option performs better
overall and is used as the default choice.

The complexity of MRIO is dominated by the upper
bound computation. On the positive side, MRIO incurs
no cost for moving cursors since they are already ad-
vanced to their next positions within the upper bound
computation process. To offer a preliminary assessment
of the effectiveness of MRIO, in Figure 5 we compare it
with RIO, in the same setting as Figure 3. MRIO reduces
the number of iterations by more than 7 times, which
leads to 2 to 3 times shorter response time than RIO.
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Fig. 5. Preliminary comparison between MRIO and RIO

5.3 Inverted File Optimization
As we mentioned in the context of Lemma 2, and
similarly to traditional text retrieval systems [31], [32],
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the structure of the inverted file affects the performance
of MRIO. Specifically, it would be meaningful to assign
surrogate query IDs such that queries with similar wj
values receive similar IDs, and are thus placed nearby
in the sorted lists. This would lead to tighter local upper
bounds and, hence, to longer jumps and fewer iterations.

ID rearrangement in inverted files has received con-
siderable attention in the past decade. Silvestri [33] sug-
gests to assign document IDs based on the alphabetical
ordering of their URLs. This simple heuristic works
because documents with similar URLs tend to hold
related content. Blanco and Barreiro [34] model the ID
rearrangement problem as a Traveling Salesman Problem
(TSP). Term similarity is used to model the distance
from a document to another. A TSP algorithm is used
to find the shortest route that passes through all of
them. Documents receive IDs according to their order of
appearance in that route. The effect of ID rearrangement
in the ID-ordering paradigm was evaluated in [35].

Unlike past work, in MRIO the inverted file holds
queries instead of documents, which entails important
differences. Typically, the number of terms in a query
is much smaller than in a document; while a document
includes hundreds or thousands of terms, user queries
include just 2.35 on the average [36]. More importantly,
prior studies [37], [38] observed that query term frequen-
cies follow a long-tailed distribution, i.e., some represen-
tative terms appear in the majority of the queries.

Based on this observation, as a first step in our ID
assignment approach, we extract representative topics
from the query set and group each query under the
topic it has the highest similarity to. Queries in a group
will receive contiguous IDs. Probabilistic topic models
are standard practice in text retrieval for topic extrac-
tion [39], [40], [41] but take considerable time to run.
Each extracted topic comprises a set of terms, based on
the term appearance probabilities. Inspired by this, we
employ a fast yet effective approach, where the query
terms with the highest appearance frequencies are each
used as a topic. Subsequently, we assign each query to
the topic it has the highest (cosine) similarity to.

To order queries even more cohesively, in a second step,
we locally apply the TSP technique to arrange the IDs
within each group. We start the TSP route from the query
that is most similar to the group’s topic, and move to its
nearest query in the group. Iteratively, we move to the
latter’s own (unvisited) nearest neighbor, and so on. For
efficiency, each nearest neighbor search only examines
ε adjacent queries in the group, i.e., the ε most similar
candidates based on their similarity to the group topic.
We empirically observed that a small ε (e.g., 5) strikes a
good preprocessing time-response time tradeoff.

Our ID assignment strategy reduces the response time
of MRIO by 30%. Note that the ID rearrangement opti-
mization does not apply to RIO, because its global µqj
maxima are irrelevant to the ordering within the lists.

6 ALTERNATIVE STREAM MODELS

In our default setting, we assume the decay model,
where document freshness is incorporated into the scor-
ing function, and document arrivals are the only type
of stream events. A common alternative is the sliding
window model, described in Section 3.2. Be it a count-
or time-based window, we now have two types of stream
events; newly arriving documents are considered as
insertions, while documents that fall out of the window
(i.e., expire) as deletions. Insertions are treated in the
same way as document arrivals in previous sections, but
deletions require special handling.

Together with each valid document d, we keep the
IDs of the queries that include it in their result. If d is
deleted, the said queries need to be reevaluated and their
results refilled. Reevaluation requires a linear scan of all
valid documents7. To reduce the frequency of expensive
reevaluations, we adopt the method of [42]. Whenever a
query is (re)evaluated, we compute its top-k′ result for
some k′ > k. Insertions are dealt with as per normal,
using however the score of the k′-th result document
instead of Sk. When a result document is deleted, we
remove it, but we only resort to reevaluation when the
size of the updated result drops below k. [42] provides
an analysis for deciding the value of k′; in practice, we
found that setting k′ to 2 · k delivers good performance
with small space overhead.

The described handling of document insertions and
deletions is not bound to the sliding window model. For
example, the same techniques can be used for streams
of arbitrary insertions and deletions, or streams where
each document is associated with an expiration time.

In most monitoring systems, the query set is fixed.
Nevertheless, our framework extends easily to scenarios
where new queries may be registered and old ones
terminated. When a new query is registered, we assign it
the largest query ID so that all its entries in the inverted
file are placed at the end of the respective lists. Its result
is computed using the evaluation approach described
above. In RIO, if a wj value in the new query is higher
than the respective µqj , the latter is updated.

When a query is terminated, we simply remove it
from the inverted file. In RIO, the µqj values of the
affected lists do not need to be eagerly updated, since
the current upper bounds still hold, albeit becoming
progressively looser. A lazy update strategy is the most
practical option. For example, we could be recomputing
the µqj values after a certain number of query inser-
tions/deletions. In MRIO, there is no need for µqj update,
because it computes the exact ψj(·) values at run time. To
enjoy the benefits described in Section 5.3, after a number
of query registrations/terminations, the query IDs may
need to be rearranged.

7. An alternative is to keep valid documents indexed by an inverted
file, but this entails large index maintenance costs, which generally
outweigh the gains in query reevaluation.
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TABLE 2
Real Document and Query Sets

Name Type Cardinality Avg. length
Wiki Documents 7,012,610 190.7

20news Documents 38,825 54.1
WSJ Documents 172,961 104.7
AOL Queries 21,011,340 1.5

Hypertable Queries 485,066 1.8

TABLE 3
Experiment Parameters

Parameter Values
No. of queries (x106) 0.25, 0.5, 1.0, 2.0, 4.0
Query length m 3, 5, 7, 11, 15, 19
Result size k 1, 5, 10, 15, 20
Decay parameter λ 0, 1, 2, 4, 8, 16
Document stream Wiki, 20news, WSJ
Synthetic queries Uniform, Connected, Clustered, Random
Real queries AOL, Hypertable
Streaming model Decay, Sliding window
No. of groups 1, 10, 20, 30, 40

7 EXPERIMENTS

We evaluate RIO and MRIO against RTA [1], Sort-
Quer [3], and TPS [18]. RTA is widely considered the
state-of-the-art due to its performance and generality for
CTQDs, however, we also compare with SortQuer be-
cause for k = 1 it was shown to outperform RTA [3]. TPS
was proposed for a different setting/problem, but it is
included in our evaluation because it is easily adaptable
to CTQDs. The internal parameters of competitors are
set to the values recommended in the respective papers.

By default, we consider processing in the decay model
(see Section 3.2), but we also present experiments in
the sliding window model. Performance is evaluated in
terms of response time, i.e., the average time required to
refresh all query results upon a stream event 8.

7.1 Experiment Setup

Document stream: We use three real document sets to
simulate the document stream. The default document set
is Wiki. It contains all available pages of Wikipedia from

8. A side aspect of performance is space requirements, where our
methods incur minimal overhead; that is, O(Q · k) to keep the results
and Sk of all queries, and O(Q ·m) to keep their ID and wj values in
the inverted file, where Q is the number of queries and m is the query
length. Even in our largest scale experiment (with 4 million queries),
space consumption is below 615MBytes.

TABLE 4
Response Time for the Default Setting (ms)

Stream Queries MRIO RIO SortQuer RTA TPS
Wiki Unif. 34.4 94.8 234.2 272.3 243.7
Wiki Conn. 62.7 163.8 241.5 653 427.8
Wiki Clus. 89.3 213.8 209.4 1866 552
Wiki Rand. 11.2 20.7 63.8 183.2 44.8

20News Conn. 5.8 6.8 32.7 58.5 18.8
WSJ Conn. 21.6 48.2 116.5 173 136.8

2001 to 2006. The other document sets are 20news and
WSJ. The former (20news) contains 38, 825 posts from
20 different newsgroups and the latter (WSJ) contains
172, 961 articles published in Wall Street Journal from
1986 to 1992. Following standard practice in text retrieval
systems, we remove all high frequency terms (i.e., stop
words) from the documents. We simulate the document
stream by randomly selecting 20, 000 documents from
the corresponding document set. The first 20% of the
documents are used for system warm-up and the rest to
evaluate performance. To disassociate the decay function
in Equation 2 from the definition of time units, we
express ∆τd in terms of the number of documents since
the beginning of the stream.

Query workload: We experiment with synthetic and
real query workloads. The synthetic ones allow more
flexibility in varying/testing the query characteristics,
thus a more comprehensive evaluation. The real ones
verify practicality using actual user queries.

We use 4 types of synthetic queries. The first is
Random, where the query terms are drawn randomly
and independently from the dictionary of the document
stream. To generate more realistic workloads, in the other
3 synthetic types we model the fact that terms in a query
are generally not independent. In particular, we create a
co-occurrence graph, where each node corresponds to a
term, and every edge is weighted by the frequency in
which its end-nodes (terms) appear in the same docu-
ment, as computed over the entire document stream. We
generate a query q by choosing its first term randomly,
with a probability that follows the appearance frequency
of the terms in the document stream. The rest of the
terms in q are drawn among the neighbors of the first
term in the co-occurrence graph. Each of the neighbors
has a probability to be selected that is dependent on its
co-occurrence frequency (weight) w with the first term.
Specifically, the probability is proportional to value wα,
where α is a parameter that controls the coherence of the
queries. In Uniform query workloads, we set α = 0. In
Connected we set α = 1, and in Clustered we set α = 2. The
default synthetic queries are Connected. Another remark
regards the length m of generated queries, which is one
of the investigated parameters. For a given m, not all
queries have the exact same length, but their individual
lengths follow a Gaussian distribution with mean m and
standard deviation σ = 1.

The real query sets are AOL and Hypertable. The first
contains 21M web queries collected from 650K users over
3 months. The second includes 485K queries from 100K
users, available at hypertable.com. Table 2 summarises
the characteristics of the real document and query sets.

Experiment parameters: All methods were imple-
mented in Java 1.7 and run on a machine with Intel
3.4GHz i7-2600 CPU, operating Ubuntu 14. Investigated
parameters and their tested ranges are listed in Ta-
ble 3. Unless otherwise specified, in each experiment
we vary one parameter and set the remaining ones to
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their defaults (shown in bold). The last row in the table
corresponds to the number of groups produced by topic-
based clustering for ID rearrangement. The default num-
ber of groups we use is 20. As explained in Section 5.3,
this optimization is only applicable to MRIO.

An important note is that we test a wide range of
query lengths because we want to capture both set-
tings where users manually specify their query terms
(in which case the query length is short [36]) but also
applications where the terms of interest are extracted
from the users’ recorded behaviour (where queries are
longer [4], [5]).

7.2 Experiment Results

Performance for the default setting: In Table 4, we
show the response time of all competing methods for
the default setting. In the first 4 rows we use the default
document stream (Wiki) with each of the synthetic query
workloads. In the last 2 rows, we use the non-default
document streams with the default query workload
(Connected). Performance is generally better for Uniform
and Random queries, because they tend to include rarer
terms than Connected and Clustered, thus, the stream
events are less likely to affect them. Performance for the
non-default document sets (20news, WSJ) is better than
Wiki, because their documents contain fewer terms (see
average length in Table 2).

MRIO is always the most efficient method, achieving
in most cases 2 to 3 times shorter response time than
the runner-up, RIO. The other three competitors are
lagging further behind. A surprising fact is that TPS
and SortQuer perform comparably or better than RTA.
Note that TPS was never before evaluated for CTQDs
nor compared with RTA (or any other CTQD method).
On the other hand, SortQuer was previously evaluated
only for k = 1 and only against RTA, as explained in
Section 2. There is no clear winner in the comparison
between TPS and SortQuer but, as we will see shortly,
SortQuer suffers for larger k and/or query length (where
it becomes the slowest among all competitors).

Number of queries: Figure 6 demonstrates the effect
of the number of queries, which varies from 250K to
4M, using four different document-query combinations.
The response time of all methods increases, since the
number of queries that are affected by a document
arrival grows proportionally to their total number. MRIO
is the fastest method in all settings. Its running time is
up to 8, 10, and 25 times shorter than TPS, SortQuer,
and RTA, respectively. The internal comparison between
MRIO and RIO shows improvements of up to 4 times.
The reason is that the pruning efficiency of MRIO is
unaffected by the number of queries, i.e., its local bounds
retain their absolute tightness guarantee, whereas (as
discussed at the end of Section 5.1) the bounds of RIO
become increasingly looser.

Query length: In Figure 7, we measure the effect of
the query length m. For brevity, we plot results for two
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Fig. 6. Effect of number of queries
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Fig. 7. Effect of query length

representative document-query combinations, i.e., ‘Wiki -
Uniform’ and ‘Wiki - Connected’. The response time of all
methods increases with m. Their relative performance
is similar to that in Figure 6, with the exception of
SortQuer. The performance of SortQuer worsens severely
with query length, because it needs to search in a two-
dimensional space for every query term.

Parameter k: In Figure 8, we examine the effect of k. As
k becomes larger, the likelihood that a document arrival
affects a query result increases. Therefore, the response
time of all methods increases with k. Our techniques,
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Fig. 10. Experiments on real query sets

MRIO and RIO, are significantly less sensitive to k
than RTA. This result attests to the stronger pruning
ability of ID-ordering than frequency-ordering for the
CTQD problem. Another important observation is that
SortQuer suffers with k. The reason is that in its two-
dimensional mappings, one axis corresponds to the score
of the k-th result document. A larger k implies a smaller
score (coordinate) for the mapped queries, which in turn
affects negatively the effectiveness of spatial pruning in
the two-dimensional spaces.

Decay parameter λ: Figure 9 investigates the effect
of the decay parameter λ. Referring to Equation 2, a
larger λ value implies that documents “age” faster, i.e.,
that newly arriving documents are favored even more
aggressively compared to the old ones. In effect, this
leads to more frequent result updates and, therefore, to
longer response time for all methods. Our techniques,
and especially MRIO, not only outperform competitors,
but they are also very robust to λ. Interestingly, Sort-
Quer scales poorly with λ. That is because the higher
frequency of result updates leads to large maintenance
cost for its numerous two-dimensional indices.

Real query workloads: For generality, in Figure 10
we present results for real queries. Sub-figures (a), (b),
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Fig. 11. Tests on ID rearrangement (Wiki - Connected)

and (c) consider AOL queries over our different docu-
ment streams, for varying number of queries (randomly
drawn from AOL). Sub-figure (d) considers Hypertable
queries for all document streams in the default setting.
Our methods, and especially MRIO, retain their superi-
ority over competitors, however, the improvement is not
as pronounced as in previous experiments. The reason
is that AOL and Hypertable queries include 1.5 and 1.8
terms on the average. This means that a large fraction
of the queries have a single term. The ideal (and trivial)
way to answer a single-term query is via a frequency-
ordered inverted file, by simply reporting the first k
documents in the list for that term. I.e., ID-ordering is
not ideal for single-term queries, however, the processing
time for such queries is anyway very short.

Inverted file optimization: In Section 5.3, we described
an ID rearrangement optimization that improves the
structure of the inverted file and enhances the per-
formance of MRIO. The process involves two steps,
grouping and TSP assignment within each group. In Fig-
ure 11, label ‘MRIO’ corresponds to the default, full rear-
rangement. The second method represented applies only
grouping, but not the TSP step. Figure 11(a) presents
the preprocessing time required for ID rearrangement for
different numbers of groups, while Figure 11(b) shows
the achieved response time for actual stream processing.

More groups always imply greater preprocessing cost,
because the assignment to groups (in the first step)
needs to consider more alternatives, thus performing
more similarity computations. The running time, how-
ever, initially decreases and then increases. The reason
is that too few groups mean that each group is less
cohesive. On the other hand, too many groups may
force physical clusters of queries to be split, placed into
different groups, receive too distant IDs, and thus be
treated as more different than they actually are.

Effect of ψj(·) implementation: In Section 5.2, we
described three alternative implementations for ψj(·)
computation, i.e., alternative techniques to derive the
local maximum weight in a given processing zone. Fig-
ure 12 compares them for different query lengths and for
different numbers of queries. The default implementa-
tion, MRIO (using sequential scan), clearly outperforms
MRIO-tree (segment tree) and MRIO-block (block de-
composition). The main reasons are its simplicity and
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Fig. 12. Effect of ψj(·) implementation
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Fig. 13. Performance in sliding window model

the maintenance overhead required in the other two
methods when Sk values are updated.

Sliding window model: We present indicative results
for the sliding window model. We use the Wiki docu-
ment stream and Connected queries. The size of the slid-
ing window is set to 4, 000 documents. We plot results
for our methods, and for TPS, as the best performing
competitor. In Figure 13(a), we use 1 million queries
and vary the query length m from 3 to 19 – all other
parameters are set to their defaults. In Figure 13(b),
we use query length m = 5 and vary the number of
queries from 250K to 4M. The reported measurements
correspond to the average time required to update all
query results for a pair of document arrival-document
expiration stream events. Both our methods outperform
TPS by a wide margin. Specifically, MRIO is 4.4 to 5.4
times faster than TPS, while RIO is 1.2 to 1.93 times faster
than TPS. Performance in Figure 13 is representative for
time-based windows too, since in both types of sliding
windows the documents expire in first-in-first-out order.

Query updates: In Section 6, we elaborated on query
updates. In Figure 14(a), we show the response time
when together with each document arrival, we have a
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Fig. 14. Additional experiments (Wiki - Connected)

number (from 1 to 200) of query updates. Each update
corresponds to a query deletion and a query insertion.
The response times of RTA, SortQuer, RIO and MRIO
are not very sensitive to the number of updates, since
their query indices are easy to maintain. TPS is the only
exception due to its more complicated query index.

Horizontal parallelization: All methods can benefit
from horizontal parallelization, i.e., by partitioning the
queries, assigning each partition to a different machine,
and executing the respective CTQD method on every
machine. Figure 14(b) shows the response time for dif-
ferent numbers of available machines.

8 CONCLUSION

In this paper, we propose a scalable framework for the
processing of continuous top-k queries on document
streams (CTQDs). A CTQD continuously reports the k
most relevant documents to a set of keywords. CTQDs
find application in many emerging applications, such
as email and news filtering. Our preliminary approach,
RIO, adapts the ID-ordering paradigm to the CTQD set-
ting. An analysis on RIO reveals that the key factor that
determines its performance is the number of iterations it
executes. This motivates our advanced approach, MRIO,
which not only reduces the number of iterations, but is
proven to minimize it. We achieve this by introducing
novel, locally adaptive bounds. Extensive experiments
with streams of real documents demonstrate that MRIO
is an order of magnitude faster than the previous state-
of-the-art. A promising direction for future work is to
extend our methodology to approximate top-k queries.
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